
RADemics

Python Data
Structures and
Algorithms for
Efficient AI
Computations

Nita Thakare, Sowmya V, A. Regita
Thangam
PRIYADARSHINI COLLEGE OF ENGG, SRM INSTITUTE
OF SCIENCE AND TECHNOLOGY, ST. XAVIER’S
COLLEGE

Python Data Structures and Algorithms for

Efficient AI Computations
1Nita Thakare, Associate Professor, Computer Technology, Priyadarshini College of Engg,

Nagpur, Mail ID: tnita1341@gmail.com , Mobile No: 99403 64303.

2Sowmya V, Assistant professor, Computer Applications - Data science, SRM Institute of

Science and technology, Ramapuram, Chennai, Mail ID: sowkvdev@gmail.com , Mobile No: 824

800 2831.

3A. Regita Thangam, Asst Professor & Head, Dept of Computer Applications, St.Xavier's

College, Palayamkottai, Mail ID: regitadja@gmail.com ,Mobile No: 824 800 2831.

Abstract

The exponential growth of data and the increasing complexity of artificial intelligence (AI)

models have created an urgent demand for computational efficiency, scalability, and optimized

resource utilization. This book chapter presents a comprehensive exploration of how Python's data

structures and algorithmic paradigms can be strategically applied to enhance the performance of

AI systems. It investigates both core and advanced data structures—including lists, dictionaries,

heaps, graphs, tries, Bloom filters, and sparse matrices—highlighting their computational

characteristics and practical relevance in AI applications. The chapter further explores algorithmic

strategies such as recursion, dynamic programming, and divide-and-conquer, illustrating their

impact on processing speed, memory efficiency, and problem-solving capability within intelligent

systems. Emphasis is placed on case-based performance benchmarking, revealing how structure-

aware algorithm design influences real-world AI outcomes in fields such as natural language

processing, deep learning, and graph analytics. The integration of high-performance Python

libraries such as NumPy, SciPy, Dask, and Pandas is also examined, demonstrating how they

enable scalable, parallel, and memory-optimized computations. Through a synthesis of theoretical

insights and empirical evaluations, this chapter establishes a structured methodology for aligning

data structure selection and algorithmic efficiency with the operational goals of modern AI

systems. The findings contribute significantly to the development of scalable, interpretable, and

resource-conscious AI architectures.

Keywords: Python programming, data structures, algorithmic optimization, AI scalability,

parallel computing, memory efficiency

Introduction

The emergence of large-scale artificial intelligence (AI) applications has transformed the

computational landscape, placing significant emphasis on the importance of efficiency, speed, and

scalability [1]. With the proliferation of data-intensive models in areas such as machine learning,

deep learning, and natural language processing, there is a growing demand for systems capable of

processing vast volumes of information in real-time [2]. This demand necessitates the strategic

selection and optimization of data structures and algorithms [3]. Python, known for its simplicity

mailto:tnita1341@gmail.com
mailto:sowkvdev@gmail.com
mailto:regitadja@gmail.com

and rich ecosystem, has become the preferred language in AI development [4]. Achieving optimal

computational performance within AI pipelines requires more than syntactic convenience; it

involves leveraging Python’s internal data organization models and algorithmic capabilities in a

methodical manner. This chapter focuses on how effective utilization of Python’s data structures

can significantly impact AI model training, inference, and overall resource consumption [5].

Understanding the underlying mechanisms of Python's data structures is vital to achieving

computational efficiency [6]. Structures such as lists, tuples, sets, dictionaries, stacks, and queues

form the basis of data manipulation and storage in AI workflows [7]. Each structure has unique

characteristics in terms of memory usage, lookup time, and mutability, which influence

performance outcomes in algorithmically intensive environments [8]. For instance, dictionaries

offer constant-time average-case access, making them suitable for label mapping or embedding

indexing in natural language tasks. Conversely, lists, although flexible, can incur overhead in

insertion and deletion operations [9]. The choice between these structures must be aligned with

task requirements, especially when dealing with high-frequency operations. A clear understanding

of time and space complexities becomes crucial when designing components of AI systems where

performance trade-offs are involved [10].

Beyond basic structures, advanced and custom data representations have proven to be

instrumental in achieving scalability in AI solutions [11]. Data structures such as graphs, trees,

tries, Bloom filters, heaps, and sparse matrices provide specialized solutions for tasks involving

hierarchical relationships, probabilistic querying, and high-dimensional data [12]. For example,

tries are highly efficient for autocomplete engines and NLP applications requiring prefix-based

searching, while Bloom filters are used in recommendation engines to perform fast membership

checks with minimal memory usage [13]. Sparse matrices are especially useful in areas like

computer vision or collaborative filtering, where data is inherently sparse and memory

optimization is critical [14]. Incorporating these structures into AI pipelines demands a deep

understanding of their algorithmic behavior and suitability for parallel and distributed computing

environments [15].

